तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए
अधिकतम $2$ चित्त प्रकट होना
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $E$ be the event of the occurrence of at most $2$ heads.
Accordingly, $E =\{ HHT , \,HTH , \,THH , \,HTT , \,THT \,, TTH , \,TTT \}$
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}$
एक पासे के दो फलकों में से प्रत्येक पर संख्या $'1'$ अंकित है, तीन फलकों में प्रत्येक पर संख्या $' 2^{\prime}$ अंकित है और एक फलक पर संख्या $'3'$ अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए
$P (2)$
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए
$3$ पट् प्रकट होना
एक परीक्षण में एक सिक्के को उछाला जाता है और यदि उस पर चित्त प्रकट होता है तो उसे पुन: उछाला जाता है। यदि पहली बार उछालने पर पट् प्राप्त होता है तो एक पासा फेंका जाता है। प्रतिदर्श समष्टि ज्ञात कीजिए।
$A$ तथा $B$ क्रमश: एक सिक्का उछालते हैं, जो पहले शीर्ष प्राप्त करता है वही जीतता है। यदि $A$ प्रारम्भ करता हो तो उसके जीतने की प्रायिकता है
किसी घटना के असफल होने की प्रायिकता $0.05$ है, तो उस घटना के लगातार $4$ बार सफल होने की प्रायिकता है